DES (Data Encryption Standard)

- Basics
- DES is a Fiestel type of Substitution - Permutation Network (SPN) cipher.
- It was approved by federal standard in November 1976, It was published in $15^{\text {th }}$ January 1977, adopted in 1977 by national bureau of standard and now NIST(National Institute of Standard and Technology) .
- Data encrypted in 64-bit blocks using 56 bit key.
- The algorithm transforms 64-bit input in a series of steps into a 64 -bit output. The same steps, with the same key, are used to reverse the encryption

- DES Encryption Process

- There are two input to the encryption function
- Plaintext to be encrypted (64 bit length)
- Key (56 bits)
- The processing of the plaintext proceeds in three phases.
- First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input.
- This is followed by a phase consisting of 16 rounds of the same function, which involves both permutation and substitution functions.
- The output of the last (sixteenth) round consists of 64 bits that are a function of the input plaintext and the key
- The left and right halves of the output are swapped to produce the preoutput.
- Finally, the preoutput is passed through a permutation (IP ${ }^{-1}$) that is the inverse of the initial permutation function, to produce the 64-bit cipher-text.
- Right halve
- The 56-bit key is used. Initially, the key is passed through a permutation function.
- Then, for each of the 16 rounds, a subkey (K_{i}) is produced by the combination of a left circular shift and a permutation.
- The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7
4	(b) Inyerse Initial Permutation (IP ${ }^{1}$)						
46	6	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

- Representation
- The input to a table consists of 64 bits numbered from 1 to 64 .
- The 64 entries in the permutation table contain a permutation of the numbers from 1 to 64 .
- Each entry in the permutation table indicates the position of a numbered input bit in the output, which also consists of 64 bits
- To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M :

M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	M_{8}
M_{9}	M_{10}	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}	M_{16}
M_{17}	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}
M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}
M_{33}	M_{34}	M_{35}	M_{36}	M_{37}	M_{38}	M_{39}	M_{40}
M_{41}	M_{42}	M_{43}	M_{44}	M_{45}	M_{46}	M_{47}	M_{48}
M_{49}	M_{50}	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}	M_{56}
M_{57}	M_{58}	M_{59}	M_{60}	M_{61}	M_{62}	M_{63}	M_{64}

- where M_{i} is a binary digit. Then the permutation $X=\operatorname{IP}(M)$ is as follows:

M_{58}	M_{50}	M_{42}	M_{34}	M_{26}	M_{18}	M_{10}	M_{2}
M_{60}	M_{52}	M_{44}	M_{36}	M_{28}	M_{20}	M_{12}	M_{4}
M_{62}	M_{54}	M_{46}	M_{38}	M_{30}	M_{22}	M_{14}	M_{6}
M_{64}	M_{56}	M_{48}	M_{40}	M_{32}	M_{24}	M_{16}	M_{8}
M_{57}	M_{49}	M_{41}	M_{33}	M_{25}	M_{17}	M_{9}	M_{1}
M_{59}	M_{51}	M_{43}	M_{35}	M_{27}	M_{19}	M_{11}	M_{3}
M_{61}	M_{53}	M_{45}	M_{37}	M_{29}	M_{21}	M_{13}	M_{5}
M_{63}	M_{55}	M_{47}	M_{39}	M_{31}	M_{23}	M_{15}	M_{7}

- If we then take the inverse permutation $Y=\operatorname{IP}^{-1}(X)=\operatorname{IP}^{-1}(\operatorname{IP}(M))$, it can be seen that the original ordering of the bits is restored.

Details of Single round

- The left and right halves of each 64-bit intermediate value are treated as separate 32-bit quantities , labeled L (left) and R (right)

- The round key K_{i} is 48 bits.
- The R input is 32 bits.
- This R input is first expanded to 48 bits by using a table that defines a permutation plus an expansion that involves duplication of 16 of the R bit
(c) Expansion Permutation (E)

- The resulting 48 bits are XORed with K_{i}. This 48-bit result passes through a substitution function that produces a 32-bit output
(d) Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Role of S-Boxes

- The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output.

- These transformations are defined in

$\$_{1}$| 14 | 4 | 13 | 1 | 2 | 15 | 11 | 8 | 3 | 10 | 6 | 12 | 5 | 9 | 0 | 7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 15 | 7 | 4 | 14 | 2 | 13 | 1 | 10 | 6 | 12 | 11 | 9 | 5 | 3 | 8 |
| 4 | 1 | 14 | 8 | 13 | 6 | 2 | 11 | 15 | 12 | 9 | 7 | 3 | 10 | 5 | 0 |
| 15 | 12 | 8 | 2 | 4 | 9 | 1 | 7 | 5 | 11 | 3 | 14 | 10 | 0 | 6 | 13 |

S_{2}| 15 | 1 | 8 | 14 | 6 | 11 | 3 | 4 | 9 | 7 | 2 | 13 | 12 | 0 | 5 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 13 | 4 | 7 | 15 | 2 | 8 | 14 | 12 | 0 | 1 | 10 | 6 | 9 | 11 | 5 |
| 0 | 14 | 7 | 11 | 10 | 4 | 13 | 1 | 5 | 8 | 12 | 6 | 9 | 3 | 2 | 15 |
| 13 | 8 | 10 | 1 | 3 | 15 | 4 | 2 | 11 | 6 | 7 | 12 | 0 | 5 | 14 | 9 |

S_{3}| 10 | 0 | 9 | 14 | 6 | 3 | 15 | 5 | 1 | 13 | 12 | 7 | 11 | 4 | 2 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 13 | 7 | 0 | 9 | 3 | 4 | 6 | 10 | 2 | 8 | 5 | 14 | 12 | 11 | 15 | 1 |
| 13 | 6 | 4 | 9 | 8 | 15 | 3 | 0 | 11 | 1 | 2 | 12 | 5 | 10 | 14 | 7 |
| 1 | 10 | 13 | 0 | 6 | 9 | 8 | 7 | 4 | 15 | 14 | 3 | 11 | 5 | 2 | 12 |

S_{4}| 7 | 13 | 14 | 3 | 0 | 6 | 9 | 10 | 1 | 2 | 8 | 5 | 11 | 12 | 4 | 15 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 13 | 8 | 11 | 5 | 6 | 15 | 0 | 3 | 4 | 7 | 2 | 12 | 1 | 10 | 14 | 9 |
| 10 | 6 | 9 | 0 | 12 | 11 | 7 | 13 | 15 | 1 | 3 | 14 | 5 | 2 | 8 | 4 |
| 3 | 15 | 0 | 6 | 10 | 1 | 13 | 8 | 9 | 4 | 5 | 11 | 12 | 7 | 2 | 14 |

S_{5}| 2 | 12 | 4 | 1 | 7 | 10 | 11 | 6 | 8 | 5 | 3 | 15 | 13 | 0 | 14 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 14 | 11 | 2 | 12 | 4 | 7 | 13 | 1 | 5 | 0 | 15 | 10 | 3 | 9 | 8 | 6 |
| 4 | 2 | 1 | 11 | 10 | 13 | 7 | 8 | 15 | 9 | 12 | 5 | 6 | 3 | 0 | 14 |
| 11 | 8 | 12 | 7 | 1 | 14 | 2 | 13 | 6 | 15 | 0 | 9 | 10 | 4 | 5 | 3 |

S_{6}| 12 | 1 | 10 | 15 | 9 | 2 | 6 | 8 | 0 | 13 | 3 | 4 | 14 | 7 | 5 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 10 | 15 | 4 | 2 | 7 | 12 | 9 | 5 | 6 | 1 | 13 | 14 | 0 | 11 | 3 | 8 |
| 9 | 14 | 15 | 5 | 2 | 8 | 12 | 3 | 7 | 0 | 4 | 10 | 1 | 13 | 11 | 6 |
| 4 | 3 | 2 | 12 | 9 | 5 | 15 | 10 | 11 | 14 | 1 | 7 | 6 | 0 | 8 | 13 |

S_{7}| 4 | 11 | 2 | 14 | 15 | 0 | 8 | 13 | 3 | 12 | 9 | 7 | 5 | 10 | 6 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 13 | 0 | 11 | 7 | 4 | 9 | 1 | 10 | 14 | 3 | 5 | 12 | 2 | 15 | 8 | 6 |
| 1 | 4 | 11 | 13 | 12 | 3 | 7 | 14 | 10 | 15 | 6 | 8 | 0 | 5 | 9 | 2 |
| 6 | 11 | 13 | 8 | 1 | 4 | 10 | 7 | 9 | 5 | 0 | 15 | 14 | 2 | 3 | 12 |

S_{8}| 13 | 2 | 8 | 4 | 6 | 15 | 11 | 1 | 10 | 9 | 3 | 14 | 5 | 0 | 12 | 7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15 | 13 | 8 | 10 | 3 | 7 | 4 | 12 | 5 | 6 | 11 | 0 | 14 | 9 | 2 |
| 7 | 11 | 4 | 1 | 9 | 12 | 14 | 2 | 0 | 6 | 10 | 13 | 15 | 3 | 5 | 8 |
| 2 | 1 | 14 | 7 | 4 | 10 | 8 | 13 | 15 | 12 | 9 | 0 | 3 | 5 | 6 | 11 |

- The first and last bits of the input to box S_{i} form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for S_{i}.
- The middle four bits select one of the sixteen columns .
- The decimal value in the cell selected by the row and column is then converted to its 4 -bit representation to produce the output.
- For example,
- In S_{1} for input 011001, the row is 01 (row 1) and the column is 1100 (column 12).
- If The value in row 1 , column 12 is 9 , so the output is 1001.
- Key Generation
- The bits of the key are numbered from 1 through 64; every eighth bit is ignored.
- The key is first subjected to a permutation governed by a table labeled Permuted Choice One.
- The resulting 56-bit key is then treated as two 28 -bit quantities, labeled C_{0} and D_{0}.
- At each round, C_{i-1} and D_{i-1} are separately subjected to a circular left shift, or rotation, of 1 or 2 bits.
- These shifted values serve as input to the next round.
- They also serve as input to Permuted Choice Two, which produces a 48-bit output that serves as input to the function $\mathrm{F}\left(R_{i-1}, K_{i}\right)$.

(a) Input Key

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64
(b) Permuted Choice One (PC-1)							

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

(d) Schedule of Left Shifts

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
number																
Bits	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

rotated
$\left.\left.\begin{array}{cccc}\text { (a) Change in Plaintext } \\ \text { Number of bits } \\ \text { Round }\end{array} \quad \begin{array}{c}\text { (b) Change in Key }\end{array}\right] \begin{array}{c}\text { Number of bits } \\ \text { that differ }\end{array}\right\}$

- Strength of DES
- Use of 56 bit keys
- Attack on DES is impractical that is DES encryption per microsecond would take more than a thousand years to break the cipher.
- There are 2^{56} possible keys, approximate 7.2×10^{16}

